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paper offers five different models in response, followed by development of a useful general expression for
the optimal control.

MATHEMATICAL MODELS

The basic vibration isolation approach that was presented in reference 3 is developed more

generally below. It assumes a state-space expression for the system equations of motion, having the form

__= Ax + Bu+_f (1)

Single-MassModels

Suppose the experiment is modeled as a mass, m, with position, x(t). Let the space station wall

have position, d(t). If the umbilicals connecting the wall to the experiment can be modeled by a spring

and a damper of stiffness, k, and damping, c, respectively; the system can be modeled schematically as in

figure 1. A magnetic actuator applying a control force ai(t) in response to a control current i(t) has been
included in the figure.

The system equation of motion is:

mi_ + c(_ - _l) + k(x - d) + cd = 0. (2)

In state space notation this becomes,

(_xill i _ k _C] [fill _=_ ] tk 0 )t
__= = + u+ c

2 2 d(t) + _ fi(t
m

(3)

where: x 1 -- x, x 2 -- :x, and u -- i. This is the model which was used in reference 3, i.e., an absolute-state

model with a position-plus-velocity disturbance. As shown in reference 3, a quadratic cost function of

J -- 1/2 fo (xrwl x -t- w3u2)dt effectively weights low frequency acceleration disturbances by a factor
proportional to 1/_z 4.

The system could alternatively be represented by a relative-state model with a velocity disturbance,
having the form:

= + u+
2 2

(4)



where x 1 and x 2 are now the relative states x-d and _ - (], respectively. The same quadratic performance

index as before could be used. This second model has the advantage of allowing relative states to be

weighted, but it does not permit direct acceleration weighting, since _ is not represented as a state.

A third model corrects this deficiency by adding u(t) -- i(t) as a state x 3 and noting that

x 1

_=1___ __-c___}m x2 States Xl and x2 are the relative states defined previ°usly" The equation

x 3

(5a)

= [xlx2xa]

k 2 kc ka

m 2 m 2 m 2

ka cot ot2

m 2 m 2 m 2

W11

x 1

x 2

x 3

(5b)

= wTWll x (5c)

allows experiment acceleration to be weighted directly in the performance index, as shown below. The

state equations can now be written as

--- Ax + bu + f (6a)



where

A =

0 1 0

-k -c -Q

m m m

0 0 0

(6b)

b =
B

o[
°I1

(6c)

di (6d)U = --

dt

If the performance index is

(6e)

j = 1 f (PlxTWll x + xTW12x + wau2)dt,
2 0 "

(7)

where Wll is as defined in equation (5), then Pl can be used to weight _; W12 can be used to weight x-d,

_-_l, and i(t); and w 3 can be used to weight the slew rate u = di/dt.

Equation (7) can be rewritten as

j = 1 f (xTWl x + WauZ)dt
2

0

(8a)

where

W 1 = PlWll + W12 (8b)
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and

di
u = __ as in equation (6c). (8c)

dt

Once a satisfactory constant feedforward gain has been determined (by the method to be developed

in this paper) the control could be implemented according to the block diagram of figure (2a) or,

equivalently, figure (2b). This third model, a relative-state model with direct acceleration weighting and

an acceleration disturbance, allows for relative-state weighting, direct acceleration weighting, and

slew-rate weighting. It has the disadvantage, however, that it assumes the system parameters to be

known well enough for equation (5) to provide a sufficiently accurate estimate of _. Such an assumption,
of course, may not be the case with umbilicals.

Two-Mass Models

Suppose now that the system is modeled using two masses, with m 1 and m 2 representing the

experiment mass and an attached accelerometer mass. Let k 1 and cI be the umbilical stiffness and
damping, and let k 2 and c2 be the stiffness and damping of the accelerometer. The model is shown
schematically in figure 3.

If the system states are defined as follows,

X 0

t

f [Xl(r) - :2(r)]dt
0

(9a)

Xl = Xl -- d (9b)

x2 : x2 -- Xl (9c)

(9d)

(9e)

then the state equations and performance index can be expressed by equations (10a) and (10b),
respectively, where u(t) = i(t).
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( 10a)

J =! f (xTWxx+ w_u_)dt
2 o

(lOb)

In this formulation _ is approximated closely by the state x2, which is available as the accelerometer

output voltage. This relative-state model with accelerometer feedback and an acceleration disturbance

adds to the complexity of the problem• However, it allows the experiment acceleration to be represented

directly as a state. It is necessary only that the accelerometer mass, stiffness, and damping be known

with reasonable accuracy.

A system making use of a load cell instead of an accelerometer, as portrayed in figure 4, would lead

to very similar state equations• Let k 1 and c 1 describe the umbilical characteristics as before. If a load

cell of stiffness k 2 separates the experiment mass m2 from a small plate of mass m 1 attached to the end of
the magnetic actuator, then the state equations can be expressed by equation (11).
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Here the states,performance index, and control are defined again by equation (9). This relative-state

model with load-cellfeedback and an acceleration disturbance also allows the experiment acceleration to

be represented directly as a state (viz.,x2). It has the further advantages that kz can be known with

great accuracy and that the load celloutput gives an accurate state measurement even with very low

frequencies.

All five of the above models have the form

= Ax + Bu + f (12a)

and cost function

j = 1 f (xTW1 x q_ uTW3u)d t
2

0

(12b)

These equations, along with the initial conditions

x(O) = _0 (12c)

and the terminal conditions

lira
u(t) = 0t---, -

(12d)

lim
f(t) = o

t----} O0

(12c)
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have already been treated analytically in reference 3. However, an analytical solution is very

algebraically intensive. For this reason we seek a general matrix solution that is more amenable to

numerical treatment, to accommodate better the higher order systems. This paper will use a differential

equations approach to find such a solution. A state transition matrix approach that yields confirmatory
results will be the subject of a later paper.

index

OPTIMAL CONTROL PROBLEM

The optimal control problem is to find the control u(t) which minimizes the quadratic performance

co

j _-- 1 f (xTWl x + uTW3u)dt
_ _ _

o

(13)

subject to the conditions

= (14a)

lim xCt : o
t-----k O0 __s. j

(14b)

lim _f(t) = 0

where W 1 and W 3 are the state- and control-weighting matrices, respectively.

(14c)

SOLUTION

The argument of the costfunctionJ from equation (13)isfirstaugmented by the Lagrange

multiplierA_(t)times the stateequation ofmotion equation (12a),to yieldthe equation

(15a)

where the Hamiltonian H is

H = 1 (xTWl x + uTWau) + A_(__- Ax- Bu- _f)
2

(15b)

It is desired to obtain an optimal solution u = u which minimizes _'.



Thefirst variation of-J'(x,u, x_') is

The control uwhich satisfies 6"J"= 0 minimizes "J"and provides the desired optimal control.

in reference 3 the problem solution can be summarized as follows:
Proceeding as

where ___satisfies the system of equations

u*= W3'BT (t ) (16)

(17a)

for A --
A BW3IB T

W 1 -A T

(17b)

x(O)= (18a)

lim
t---_ oox(t) = 0 (lSb)

lim
f(t) = 0

t "'_ O0

(18c)

If ___can be found in terms of xand _f,equation (16) will provide an expression for the optimal control.

The solution of the related homogeneous system

(19)
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is

(20)

Assume for simplicity that the eigenvalues of ,_, are all distinct, so that the Jordan canonical form J of A,

is diagonal. Form a matrix X composed of the eigenvectors of A (as its columns) such that

j = x-l_x =

#n

(21)

has the negative eigenvalues/t i of _t as its diagonal elements, arranged such that/z 1 < #2 < "'" < #n < 0.

Partition X and X -1 as

homogeneous equation (19) is

respectively. Then the solution to the

Xl ie:t x21x2jeat (22)

expressible as

(23a)

where

_1 : Xl;1)_o q- X121)_-o
(Z3b)

10



The variation of parameters method can now be used to find the general solution to the

nonhomogeneous system

_[lleAtc_l + X12e-Atc21

_21eAtcl + X22e-Atc2J

(24a)

where

X11eAtc_'l -4- X12e-Atc_2

X21eAt__l~ + X22e-At'_c2J

(24b)

is to be solved and integrated to find c l and c 2.

The solution to equation (24b) is

2 eat

(25a)

or

11



e#nt s Tf
-n-

(25b)

where

__lTI
T

s 1

T
S
-n

(25e,d)

Integrating,

c--I = _1 + f e-ttXll l)-fdt (26a)

___= _ + f e-'<X_7')_fdt (26b)

where the 71i and 72i (i = 1,...,n) are 2n integration constants and the integrals are indefinite integrals.

Substituting into equation (24a) yields

I}=i _lleAl(_l "4- f e-AtXtlll)-fdt)+ X12e-Ai(X2 + f eAtX_l)-fdt) l (27)
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Applying terminal conditions on x(t) (eq. (18b)) leads to the result that :I2 --- 0, so that

equation (27) simplifies to

I}111 +21g + x22_

(28a)

where

= eAt (,,11 + f e-AtXlll)fdt) (2Sb)

and

---- e-At f e Atx21(-1)fdt_ (28c)

If now we solve for ____interms of x, we obtain the result

__ -_ (X21X?ll)x -[- (X22 - X21X?11X12)___
(29a)

or, equivalently,

__ = (X21X;?)X _- X_21)-le-At f eAtx_:l)fdt
(29b)

(--1)--1 (X22where X22 -- -- X21 Xll X12) -1 is the inverse of the lower right-hand partition of X -1, a.s

defined before. Applying equation (16) we have the result that the optimal control is

u* ----(W31BTx21x;?)x -I-(W31BTx_21)-le-At f eAtX_:l'f(t)dt)
(30)

This is a simple form of the result obtained by Salukvadze in 1961 (ref. 1). If the disturbance f is set
equal to 0, the optimal control reduces to

u.= (31)

By comparison with the solution to the LQR problem (ref. 4), it is apparent that

-X21Xll I : P (32)
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whereP is the solutionto the Algebraic Riccati Equation (A.R.E.)

PA + ATp - PBW31BTp + W 1 = 0 (33)

Making this substitution for -X21 Xl1-1 into equation (30),

u*= -W31BTpx + W31BTx_2-1}-le-At I eAtX_ll}_f(t) dt (34)

If the indefinite integral in equation (30) is integrated repeatedly by parts, the control can be expressed

a8

u* =-W31BTpx- W31BTx_2 !)-1 E
r----0

(35)

Assume, conservatively, that no derivatives of f(t) are available. Then equation (35) reduces to

= -- _ W- ll:iTx(- 1)- 1A- lX(- l)f(0)_', W31BTPx q- "'3 -- "'22 "" "'21 :

where the "(0)" indicates that, only the term for r=0 has been retained and the "--," indicates that the
resultant control only approximates the optimal. It can be shown readily that

(36)

(37)

so that

(0)_,
U

--I "_ (--I)--1 --I (--1)pf
(38)

It can also be shown (not so readily) that

X(-1)-lh-Ix -1) = /k -T
22 22

(39)

where

.4. = A - BW3-1BTp
(40)

is the state matrix for the closed-loop system.
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Substitutinginto equation (38)

(0)_-, = _ W_,BTp_ x + W_,BT__Tp f

By using equations (17b) and (21) one can show by simple matrix manipulations that

h =

Equation (38) can then be expressed alternatively as

+w;'B%.A-'x;:)'P_,

or, applying equation (32), as

(41)

(42)

(43)

(0)___,, ____ _w_XsTpx + W_IBT(X21A_Ix;:)Tf (44)

CONTROL EVALUATION

Physical Realizability of the Control

The control (35) is physically realizable if the states and sufficient derivatives of _f(t) are accessible,

if the coefficients are real, and if the higher order terms are negligible.

It can be shown by a state-transition-matrix approach that the coefficients are always real, whether
or not the eigenvalues are real. Also, for eigenvalues of large enough modulus (-/l-l) r+l rapidly

converges to the zero matrix with increasing r, so that coefficients of higher order terms rapidly disappear

as well. Given slowly varying disturbances the derivatives of f(t) will be small, and the convergence of

the higher order terms will be even more rapid.

Transfer Function Matrix

Neglecting higher order terms the transfer function matrix for the closed-loop system is given by

X(s) -- (sI - A)-'(I - 9{)F(s) (45a)

where

15



(46a)

: (46b)

_- -BW31(_t-tB)Tp (46c)

Control Stability and Stability Robustness

Since the control feedback gains are simply LQR feedback gain s the closed loop system is stable

and enjoys the stability robustness characteristics guaranteed by LQR theory, 1 viz., a minimum of 60 °

phase margin, infinite positive gain margin, and 6 dB negative gain margin.

SAMPLE PROBLEMS

First Order Problem

Let a first-order problem be described as follows:

,
Find u = u which minimizes J where

¢q

j = _1 f (WlX2 + w3u2)dt (47a)
2

0

for the system

: ax+ bu + f (47b)

with initial condition

x(0) ----xo (47c)

and terminal conditions

1Phase margin and gain margin in the multiple-input multiple-output case are measured by diagonal

perturbation; i.e., the same change in each channel (ref. 5).

16



lim x(t) -- 0 (47d)

lim f(t) = 0 (47e)
t--co

The Hamiltonian matrix is

are

b!]
1

for which the eigenvalue matrix and associated eigenvector matrix

(48a)

where

and

I a + b 2

w 1

w 3

(4Sb)

X __ ix,1Xl l=ib' -b'1
Xzl X22J 3(#- a) w3( _ + a)

Inverting,

ix :''
[X_l 1) x_l)] 1-(#- a)

[ 2b2. 2w3J,]

Equations (36), (38), and (41) each yield the result

(48c)

(48d)
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(49)

for which the closed-loop transfer function is given by

xCs)- o, FCs)
#(s- u)

(50)

With LQR F/B alone the control is

u L = x,

(51)

for which the closed loop transfer function is given by

1
x(s) -

s-#
F(s) (52)

Note from (48b) that the modulus of # is always greater than that of a, so that inclusion of the
feedforward control term always result in better disturbance rejection than that from control with LQR

F/B alone.

Comparison of the performance indices JL and (0)j* corresponding to u L and (0)fi, respectively, is

very, messy' algebraically. However it can be shown, for x0 = 0 and arbitrary dwindling function f(t), that
(0)j < JL if a < 0 (i.e., if the system is open-loop stable), and.that (o!j < JL if a > 0 if-# > 4/3 a (i.e.,

if Wl/W 3 > 7a2/gb2). For x 0 * 0 and f - 0 the two controls u; and (o)fi are identical, as are their
respective performance indices.

Second Order Problem

Suppose now that the solution method is applied to the space-experiment disturbance-rejection

problem raised previously in this paper. Consider the first mathematical model of the system, so that the

problem is as follows:

Find u -- u which minimizes J where

oo

,j ___ 1 f (wTW1 x _4_ w3u2)dt
2

0

(53a)
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given the conditions

for the system

0 l xjXltmt[mU-k 2

m

0 pd(t) + _c
m

(53b)

x(O)= (53c)

lim x(t) = 0 (53d)
t-- CO

lim f(t) = 0 (53e)

Let the system parameters be m = 100 lbm, k = 0.3 lbf/ft, and c = 0.000622 lbf-sec/ft, corresponding to
damping ratio ( = 0.1 percent.

Selected results are found to be as previously reported in reference 3_ where this particular problem

was treated in detail. There it was noted that the performance index weights low frequency accelerations

by a factor proportional to + w22 , so that low frequencies are more heavily weighted, as

l, _o4
desired. The result is that for low frequencies the inclusion of feedforward in the control can lead to

acceleration reductions orders of magnitude below that afforded by simple LQR feedback alone, without

leading to poor performance at higher frequencies. Different frequency-weighting schemes, of course,

would lead to different disturbance-rejection characteristics (ref. 6).

For any given set of weights Wll , W22 , and w3, the closed loop gain for the system with LQR
feedback alone can be compared with that for the system with LQR feedback plus proportional

feedforward_ at a given frequency. Table I presents the factors by which the DC level (w -- 0) for the

closed-loop system is reduced by merely adding a proportional feedforward term to standard LQR

feedback. This represents, in generals the factor by which the closed-loop Bode-a plot for a given set of
weights is lowered at low frequencies by the addition of proportional feedforward. Note that for all

combinations of weights considered--each weight being allowed to vary over four orders of

magnitude--the reduction factor lies between zero and one_ varying from 6.00×10 -4 to 9.86×10 -1. The

optimization procedure accomplishes this task by moving the transfer function zeros to reduce the gains
in accordance with the frequency-, state-_ and control-weightings present in the performance index. The

poles of the transfer function depend on the feedback gains alone, and do not vary with feedforward
changes.
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CONCLUSION
\

This paper has developed a general expression for an optimal control in the case of system state

equations with dwindling forcing (disturbance) terms included, given a quadratic performance index. The
control, when expanded in series form, has been found to entail constant, real-valued feedback gains

identical to those determined by the standard LQR approach, along with constant, real-valued

feedforward gains premultiplying the disturbance terms and their derivatives.

It has been found that the control offers significant disturbance-rejection improvements over a
control that uses LQR feedback alone, without sacrificing robustness. In at least the 1st order system,

sufficient conditions have been presented for the simplest F/B plus F/F control which result in a lower
performance index than with LQR F/B alone. With large enough closed-loop system eigenvalues and

slowly varying disturbances, the conclusion was made that only a few feedforward terms are needed to

approximate closely the actual optimal controls.

Five mathematical models of a one-dimensional disturbance-rejection problem were suggested, each

of which is in a form amenable to the optimal control approach presented by this paper. Application was

made of the optimal control method to one of these models, leading to the same numerical values of gains

(both F/B and F/F) as found previously using a nonlinear-algebra formulation (ref. 3).
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Figure 1 .--Physical representation of modeled single degree-of-

freedom system.
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Figure 2.--Controller Block diagrams for constant feedforward gain. Both figures (a) and (b) are equivalent

implementations of the constant feedforward gain controller.
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Figure 3.--Physical representations of modeled systems using

two masses m 1 and m 2 , representing the experimental mass

and an attached accelerometer.
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